skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khadka, Pramod"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plant immunity relies on the perception of microbe-associated molecular patterns (MAMPs) from invading microbes to induce defense responses that suppress attempted infections. It has been proposed that MAMP-triggered immunity (MTI) suppresses bacterial infections by suppressing the onset of bacterial virulence. However, the mechanisms by which plants exert this action are poorly understood. Here, we showed that MAMP perception in Arabidopsis (Arabidopsis thaliana) induces the accumulation of free amino acids in a salicylic acid (SA)-dependent manner. When co-infiltrated with Glutamine and Serine, two of the MAMP-induced highly accumulating amino acids, Pseudomonas syringae pv. tomato DC3000 expressed low levels of virulence genes and failed to produce robust infections in otherwise susceptible plants. When applied exogenously, Glutamine and Serine directly suppressed bacterial virulence and growth, bypassing MAMP perception and SA signaling. In addition, an increased level of endogenous Glutamine in the leaf apoplast of a gain-of-function mutant of Glutamine Dumper-1 rescued the partially compromised bacterial virulence- and growth-suppressing phenotype of the SA-induced deficient-2 (sid2) mutant. Our data suggest that MTI suppresses bacterial infections by delaying the onset of virulence with an excess of amino acids at the early stages of infection. 
    more » « less
  2. Abstract Plants live under the constant challenge of microbes that probe the environment in search of potential hosts. Plant cells perceive microbe-associated molecular patterns (MAMPs) from incoming microbes and activate defense responses that suppress attempted infections. Despite the substantial progress made in understanding MAMP-triggered signaling pathways, the downstream mechanisms that suppress bacterial growth and disease remain poorly understood. Here, we uncover how MAMP perception in Arabidopsis (Arabidopsis thaliana) elicits dynamic changes in extracellular concentrations of free L-amino acids (AA). Within the first 3 h of MAMP perception, a fast and transient inhibition of AA uptake produces a transient increase in extracellular AA concentrations. Within 4 and 12 h of MAMP perception, a sustained enhanced uptake activity decreases the extracellular concentrations of AA. Gene expression analysis showed that salicylic acid-mediated signaling contributes to inducing the expression of AA/H+ symporters responsible for the MAMP-induced enhanced uptake. A screening of loss-of-function mutants identified the AA/H+ symporter lysin/histidine transporter-1 as an important contributor to MAMP-induced enhanced uptake of AA. Infection assays in lht1-1 seedlings revealed that high concentrations of extracellular AA promote bacterial growth in the absence of induced defense elicitation but contribute to suppressing bacterial growth upon MAMP perception. Overall, the data presented in this study reveal a mechanistic connection between MAMP-induced plant defense and suppression of bacterial growth through the modulation of AA transport activity. 
    more » « less